Bohr radius to finger (cloth) converter

     

What is Bohr radius

The Bohr radius, often denoted as "a₀," is a fundamental physical constant in quantum mechanics and atomic physics. It is named after the Danish physicist Niels Bohr, who made significant contributions to our understanding of atomic structure.

The Bohr radius represents the average distance between the nucleus and the electron in the lowest energy state (ground state) of a hydrogen atom, or a hydrogen-like ion with a single electron (e.g., helium ion with only one electron remaining). It is a key parameter in the Bohr model of the hydrogen atom.

The Bohr radius is defined as:

a₀ = (4πε₀ħ²) / (me²),

where:

  • a₀ is the Bohr radius,
  • ε₀ is the vacuum permittivity (approximately 8.854 x 10⁻¹² C²/N·m²),
  • ħ is the reduced Planck constant (approximately 1.054571 x 10⁻³⁴ J·s),
  • me is the electron mass (approximately 9.109 x 10⁻³¹ kg),
  • e is the elementary charge (approximately 1.602 x 10⁻¹⁹ C).

When you calculate the Bohr radius using these constants, you get a value of approximately 5.29177210903 x 10⁻¹¹ meters, or about 0.5292 angstroms (Å).

The Bohr radius is a critical parameter in understanding the structure of atoms, particularly hydrogen-like atoms. It provides a basic scale for the size of atomic orbitals and helps in describing the energy levels of electrons in these atoms.

What is finger (cloth)

A "finger" is a traditional unit of length used for measuring cloth or fabric. Similar to the span, the finger is based on the width of a human finger. It was historically used in various countries, including England.

In England, a finger was typically equal to about 2.25 inches or approximately 5.715 centimeters. However, like other traditional units of measurement, the precise length of a finger could vary depending on the region and historical context.

Trending Unit Converter

Bohr radius to other unit converter