In the field of atomic and molecular physics, an "atomic unit of length" is a unit of measurement that is used to express distances at the atomic and molecular scale in a dimensionless way. It is part of a system of atomic units (a.u.) that simplifies calculations involving fundamental physical constants and properties of atoms and molecules.
The atomic unit of length (a.u. of length) is defined in terms of the Bohr radius (a₀), which is a fundamental constant in atomic physics. The Bohr radius is approximately 0.52917721067 angstroms (Å) or 5.2917721067 x 10^-11 meters (m).
In atomic units, the Bohr radius is set to exactly 1 a.u. of length. Therefore, when using atomic units, distances are expressed relative to the Bohr radius, and the value of 1 a.u. of length corresponds to the typical size scale of atomic and molecular structures.
The use of atomic units simplifies many quantum mechanical calculations and allows physicists and chemists to work with dimensionless quantities, making it easier to compare and analyze atomic and molecular properties.
A "finger" is a traditional unit of length used for measuring cloth or fabric. Similar to the span, the finger is based on the width of a human finger. It was historically used in various countries, including England.
In England, a finger was typically equal to about 2.25 inches or approximately 5.715 centimeters. However, like other traditional units of measurement, the precise length of a finger could vary depending on the region and historical context.